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Abstract.

The paper, which is the first in a series of two, presents an approach

which allows us to derive a family of homogenization approaches and assess

the accuracy of any homogenization in the relation of given input data.



1. Introduction.

The study of periodic media is one application of partial differential

equations that have highly oscillatory, periodic coefficients. Essentialy,

the problem is to solve the elliptic differential equation

n 8 f x h' " + aO(h)u h~x x
(Z) - z ....-- 0  h(x) = f(X)

p,q=l P q

on f c R n with prescribed boundary conditions, In which apq and a0  are

real-valued 2w-periodic functions and h is a positive number that is small

in comparison with the diameter of the domain C1.

The problem is to get the solution of (1) for relatively (to what?) small

h. There is large available mathematical literature which addresses the beha-

vior of the solution of (1) as h-->O. We mention here for example [3], [81,

(91 and survey [20].

One of the main applications of differential equations of the type (i) is

In the field of composite materials. Here the aim is to replace the composite

by homogeneous materials with the bulk material properties. For various

aspects we refer to [11, [2], [11], [121, [18]. A brief history is given in

[2]. The accuracy of such replacement depends, of course, on the goals of the

analysis. Hence many approaches are used in applications. The most obvious

approach, namely to use asymptotic analysis for h--)O, is not always applic-

able because h Is given and cannot be changed and because of particular aims

of the analysis. In a similar vein, when numerically solving the problem (1),

one faces essential difficulties of how to represent the microstructure of" the

composite materials. This difficulty falls into the class of solution of

elliptic equations with rough coefficients. For various aspects of this

problem, we refer to [61, [7].



As was said above, various approaches can be and are used for solving

(1), approaches which often give very different results, see e.g. [101. In

addition some of these approaches, although In principle well described, are

leading to large technical difficulties because a lot of symbol manipulation

Is needed. The use of symbolic manipulation on computers does not simplify

these difficulties too much.

This paper presents and thoroughly analyzes an approach which is directed

to overcome the various major difficulties mentioned above:

a) It allows the design of an entire class of "homogenization" formula-

tions and judge the accuracy and reliability of any homogenization approach.

It also allows the specification of the class of problems (e.g. loads) for

which a homogenization approach is applicable. In addition, it leads to a

hierarchal construction of the homogenization formulations.

b) The implementation is completely numerical, and allows adaptive

modeling (selection of the equations).

We will address here only the problem with 02 Rn although very impor-

tant features of the solution occur near the boundary when Q2 is a bounded

domain. These problems have a special character and will not be addressed

here. Some comments will be made In section 5.

We will assume that

I) = Rn

ii) ao(x) 2 To > 0

iII) f e L 2(Rn)

and that the problem Is elliptic and self-adjoint.

The restriction of our analysis to a single differential equation is of a

technical character only, as the ideas are also applicable to a system of

equations, which would arise in elasticity problems, for example. The main
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idea of the approach, under the assumptions stated above, is based on the

result that the solution uh of (1) can be written in the form

uh W= 1 f ~t)O(Xht)e it-xdtuh(x) (2n) n/2 IRnt h

in which k is the Fourier transform of f and 0(y,h,t) is a function,

which is 2w-periodic in y and analytic in h and t, and which solves the

differential equation

n

(3) -e-ihty 2 ' 4apq(y).L(0(y)eiht*y)] +h 2 ao(y),(y) = h2

p,q=l p p

on {y en : ly p < m}. Other representations of uh  that are related to

(2), but developed in a different context, can be found in (81 and (161.

By taking various expansions of 0 with respect to h and t, we can
h

express approximately the solution u in terms of solutions of auxiliary

partial differential equations with constant coefficients, or even pseudodif-

ferential equation, or alternatively, we can design a system of "ansatz" func-

tions to be used in a finite element model. Considering the error estimates

associated with the expansions of 0 allows us to design an adaptive method

of selecting a "model" that would yield an approximate solution, whose accu-

racy meeds a prescribed tolerance. These ideas are more fully discussed in

(61, where we introduced a method to systematically derive numerical, computer

horiented methods for an approximation of u

In this paper, we concentrate our attention on the representation (2),

whereas we will make a thorough analysis of 0(y,h,t) in [15]. Consequently,

the properties of 0 that are used in this paper will be stated without

proof. The integral in (2) is defined as a Bochner integral of

H (Rn )-valued function (H (,n ) is defined in! the next section). As a
-V3
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simple application of (2), we will given an alternate proof, in section 5, of

h
the classical homogenization result (the limit of u as h-->O).

This paper and [151 are based on the first author's Ph.D. thesis [14], in

which additional details and references can be found.

2. Notation and Statement of the Problem.

For j = 0,1, and for any v E R, define the weighted Sobolev space

HJ(Rn) to be the completion of Cw(Rn ) (the complex-valued CM-functions
n

that have compact support on R n), with respect to 11II11 , where

HullI = ID u(x)I2e2 I)Ixdx.V n )7,

(For x e Rn, xI M Ixl +... +lXnl.) We will use HJ(Rn) and II'1I. to

denote the standard Sobolev space and norm on Rn (i.e., when v = 0). Next,

we introduce the Sobolev spaces of periodic functions for which

S a y . (y1,...y) e : lyk < x for k = 1,... ,n}

is the fundamental period. For J = 0,1, we denote the standard Sobolev norm

on S by If-11j, S , and we define H (S) to be the completion, with respect
per

to the norm t111J,S, of the complex-valued CO-functions on Rn that are

2w-periodic in each coordinate variable.

Let apq (p,q = 1,..., n) and a0 be real-valued, 21-periodic,

L -functions defined on R n . Furthermore, assume a = a and assume thatw qp pq

there exist positive constants 70 and 71 such that

4



C x) > and

E a (x)pq Wq -a 7l 1Z p I for a I p E C,,p, q2l I! q P .p-l

almost everywhere on R For each h > 0, define

a u Iv d

T(h)[u,v] = a (x)7-x)--Cx) + a ld)u(x) T x.
/ I/ pq  a0 h j

JRnp n q p

An immediate consequence of the conditions imposed on the coefficients a0

and a is that there exists a constant C, independent of h > 0, suchpq[

that

(I) (h)[u,v]I < ClIull jvII1 and

i nl(h)[v,v l ? minfzO ' lH{ v ll2

for all u and v In H 1(Rn). Then, according to the Lax-Milgram theorem,
h

for each h > 0 and each f E L there exists a unique function u E

H (Rn ) that satisfies

(6) T(h)[uh v] = I n f (x ) F d x  for all v E H 1(Rn),

because

(7) v 1-- ~ f (x) v xdx

'Rn

Is a bounded linear functional on H (Rn).

Next, for each h e C and t e Cn, define the sequilinear form

0(h,t) : Hi (s)xHI  (s)---C by
per per

I~t a ht-y __L - iht y 2
0(h, tl[,v] -a p(y18--(O(ylehty vye- Y)+h a0 (Y)O(Y)v(Y) Y

5yp

• • .i I I I i5



n+1 n+ 1Lemma 1. A neighborhood G c Cn , of R can be found such that for each

(h,t) E G, there exists a unique function (-,h,t) e H1 (S) that satisfies
per

(h,t)[#(.,h,t),v] = h2[ v ydy for all v e H (S).! per
"S

Furthermore, the mapping (h,t) ,) E H1  (S) is holomorphic, by
per

which we mean that about each point in G, the function (h,t)a- @(.,h,t)

can be expanded in a power series, convergent in H1 (S) and in which each
per

coefficient is an element in H1 (S).per

For the most part, the proofs of statements concerning 0(.,h,t) are

omitted in this paper since we give a fairly complete analysis of 0(.,h,t)

in [15].
h

In section 4, we show that u admits the representation

h 1 [ ox h )it-x(8) u(x) n/2 'Rn 51,h,t)ei dt,

in which f(t) - 1  n f f(x)e-it'Xdx and in which the integral is a
(2 )/ n

Bochner integral of H1 (n)-valued functions. Our proof of (8) has as its-V

first step the claim that for each h > 0 and t e Rn,

x it.x(9) x F--@ h,t)e t '

it-x1nsolves (6) when fVx) = e However, (9) is not an element of H (R),

and for this choice of f, (7) is not a bounded linear functional on H (R n).

Consequently, we consider (h) as a sesquilinear form on Hi (R n)xH (Rn

for (sufficiently small) positive numbers u.

The main tool for analyzing T(h) is

Theorem 2. Let HI and H2  be two complex Hilbert spaces with respective

6



norms ll'1k and associated inner products (",)k for k = 1,2. Let B[-,]

be a sesquilinear form defined on H xH1 for which there exist positive con-

stants M and y such that

a) B[u,v][ < MllullIVll2 for all u e H1 and v E H2,

b) inf sup IB[u,vIl a 7 > 0, and
ueH1  veH2Iu i1 I~i21

c) sup IB[u,v]I > 0 for each v e H2 v * 0.

If f e H2 the space of bounded conjugate-linear functionals on H2 , then2'

there exists a unique u0 e H such that

d) B[uo,v] f(v) for all v e H2 , and

e) 11 u0111  -<  1  1 ,.

A proof of theorem 2 in the case of real Hilbert spaces can be found in

[4] (as Theorem 5.2.1). The method of proof In the complex case is essen-

tially unchanged and thus will be omitted.

We now prove

Lemma 3. There exist positive constants uoC, and 7 such that for all

V e (O v0) and all h > 0,

1) I (h)[u,vJl Cllulll _1 llvlll,v ,

Ii) Inf sup lI'h)[u,vIl a 7 > 0, and
Il 11 , _ll1 lv ll l 1~

iii) sup l*(h)[u,v]l > 0 for all v e H (Rn) and v * 0.

ueHI (Rn )-12

The constants UoC, and 7 are independent of h > 0; however, depends

on u0

Proof. Statement (I) follows because %P(h) has L -coefficients. To prove
-2vlIxl 1 ~ (n

statement (11), define (Tu)(x) a u(x)e for u e H 1 ). Then for

7



u > 0,

(10) ITu--2  I [ -2vx)-2 sgnx)u(x)l2 +lu(x) 2 e-2Ulxldx

S 2(1+4nu 
2 )luII

2

1, -u"

Now,

(11) %k(h)Lu,Tu] a t xT tx) + Ca()u(x)v- d x
Znqha q axp 0h VT
,q=l

x a u +a,(C)u(x) x+-2TlXldx=,n apq (hi - tx) -x- ax )

= -2v Zapq (Mu (x)sgn(xp)iWT~e 2I)x dx
, q=l

= % 1(h)[u] -2uT 2 (h)[u].

2
A simple consequence of (4) is T 1,(h)Lu] a min{,OIlIllull2,u We also have

t*k2(h)u I ~ cIluI 1 2~ for some constant c, independent of h. Combining

these two Inequalities with (10) and (11) yields

2mInfyo,71 }  2cv

IT(h)[u,Tu]l a (min{i 0 ,T1 }-2cu)11ull 2  
,4 .llU1, V clTullluV

2C(1 +4nu2

Consequently, there exist positive constants v0  and 1, which are indepen-

dent of h > 0, for which '(h[u, Tu] jllulll _VlTull ,V for all P e (0

This proves (1i).

Statement (iII) is proven in a similar manner. o

Throughout the remainder of this paper, we implicitly assume v E (O, 0.

Let f E L2(Rn); then

8



i v for all v e H CRn).I f x) dxl .5 llfllollvlll,, ,

Lemma 3, in conjunction with Theorem 2, now yields

Theorem 4. For each h > 0 and f E L2(Rn) there exists a unique function

h HI (Pn ) for which
-V

(12) F(h)(uhvI = f(x)v'xdx for all v e H (Rn).

R
n

Furthermore, 1 u h 1l_:5 illf 1o
i,-V 7 110"

There is no ambiguity in denoting the unique solutions of (6) and (12) by
h in in 1I

u because H (R n ) c H (R n ) c H R n ) implies they are the same function.
V -V

However, (12) can be solved when f belongs to a broader class of functions

than the class of L2-functions; namely, when f belongs to the dual space of

H (Rn). One such function is defined by f(x) = eIt 'x

3. Preliminaries.

It is easy to prove

Theorem 5. There exists a constant C0  independent of t, such that

lixe tXY il -s : C0(1+lltU)llxill, s

for al S e H (S) and for all t e , where 11tlf2 = t +... +t

For each h > 0 and each w e Z, define

S:hw) a i e Rn (W -I)nh < x < (W +i)nh, j = ,.... ,n}.

Note that S(1,(0,...,0)) = S is the fundamental domain for the periodic

9



spaces.

Lemma 6. For each h > 0 and v > 0, there exists a constant C (h,P) that

remains bounded as h--40, such that for all t e Rn  and for any X e

H° (S),
per

1) fII(h)e itx[ 0- : C1 (h,I)fI[XI[O,

and for any X e H1  (S),
per

ii) IIx(h)eit'xl 1 C1+h- 1 )Cl(h,P)llxeiht'Yl11

Proof.

iiX(hle it-xll1 ,_ 5 la t (x x) X)2 + 2 le1 2 vxl ,

ner '(h, 2. P

where 2w - (2wi,... 92w n) Making the substitution -i y+2rw in the

integral over S(h,2w) and using the periodicity of X yields a constant

c, independent of h, such that

1(x )eit-x 12 i I L (y)eihtY)e i21hw' t 12 + X(Y)12
I, -V njj ay l

Wez p=1

*e-2vhIy+2wl hndy}

<[l+h - 2  Z e4nvhl h hnI xeihtY IS.

n 1s

It is not difficult to prove that there is a constant c that is independent

of h, such that

hn Z e-4nvh lr l 5 chn(,+f e-r vh lxldx).

.Z n  - Rn

Upon setting C1 (h,L) a E6c(hn+(2I)-n), (ii) follows.

10



A similar argument In which the contribution from the first order deriva-

tives is ignored, produces (1).

Lemma 7. For all h>O0 and t eR we have

and

for some positive number C 2(h).

Proof. It follows from (4) and Lemma 1 that

S (2w,) n 2h2IIOC',h~t)I O's.

The lemma now follows with C 2 (h) * (21r)n/-21
min{7 0,2-lh}

4. The representat ion of uh.

We begin with

Theorem 8. For each h > 0 and t e Rn,

1) x -4 0CE, hOe itx Is in H CR n, and

i1) V h '' -~h~ V] nelxvxdx for all v e Hin
fRn

Furthermore,



111) 110( ,h,t)e it'x~l , u 11 5.

Proof. Statement (i) follows from Lemmas 6 and 7, which imply

jj0(-E,h,t)eit'x 1l,_5 (1+h- I )C (h,1)C-(h). Assuming that (ii) is true, (iii)

is a consequence of Theorem 2, Lemma 3, and the fact I fneitxv-(7xdxl 5

1 11VII The proof of (ii) is based upon determining the relationship
n/2 1'VU

between T(h) and 0(h,t), and then using Lemma 1.

For each h > 0, there exists a locally finite, Cm-partitlon of unity

{o (,h) •w e Z n } subordinated to {S(h,w) :o e Z n } such that

o (.,h)v converges to v in H (R n ) whenever v E H (R n). The basic

8o-
requirement of the partition of unity is that tor (x,h)I and --L)(x,h)l for

W ax
p

p = 1,...,n are uniformly bounded for x e Rn and w e Zn . Then vW (,h) a

o- Ch)v ahs compact support in S(h,w), and for any I E H C1e(S),
w per

It(X it-x
Sh)( itx 'v] = (h)[x(-)e v (x,h)]

9v] ah--x ,h )

~/Z f p
Wezn S(h,w) ,Lq=i q P

X 1 ntin

4.aoC ) X(!) e "tx v x-h d

because T(h) is a continuous sesquilinear form on H1 (R n)xH (Rn), accord--V V

ing to Lemma 3 (I). In an effort to deform the region of integration S(h,w)

into S = S(i,(O,...,O)) in each integral, make the substitution !E = y+nL

for x E S(h,w), In which is the n-tuple of even integers, that is,

derived from w according to

12



= p wp even,

p-, Wp odd.

Using the periodicity of aO , (apq : p,q = 1,... ,n}, and X, each integral

in (13) becomes

(14) S) Zqa (Y)8 (y)evht*(Y+n)) (hWy+n),h)
q p

f (,W--) - p,q--l pq 5 xP

+ aO(Y)x(y)elht'(Y+N& v (hy+w)),h)}hndy.

Next, for each w e Zn , define

(15) v0(y,h,t) a v(h(y+),h)e
- h t (y +w )

for y E S(lw-6) and extend vO(-,h,t) to all of Rn by 2n-periodicity.

Since the support of y- v W(h(y+n6),h) is contained in S(1,W-6), it

follows that v0 (,h,t) e H 1(S). Using (15) to substitute for
W per

v (h(y+nZ)),h) in (14) yields

n

jh-2 a () a Y~eiht-y 8) 0 (v~~- iht-y
(1, W-6} p,q2.l 1

+M o(YlI(y)v 0(y,h,t)}hndy.

Now, the domain of integration S(1,w-6) can be replaced with S(1,(0,... ,0))

S 5, and consequently

(16) %(h) X(t1)e v = ] hn-2 (h,t)[XvO(.,h,t)]
wl n

inZ

for all v E H (R n.

13



Noting Lemma 1, it is now a simple matter to prove (i):

(x )it~xn-0

(h)[O ,h,t~e ,v] = h n-2(h,t)[O(.,h,t),v (-,h,t)]

= Zhn ISv°(yh,t)dy

= R niet xv(x)dx
= eit~Xd

in 0 1

for all v e H 1(R n), since vO0 (,h,t) e H 1(S). oV Wper

Lemma 9. For each h > 0, t e Rn ,(,h,t)eitX e H1 (Rn) is a continuous-V

mapping.

Proof. The continuity of t--4e It x e H1 (R n ) follows in a straightforward-V

manner.

Upon setting t = 0 and x = 0(.,h,t)- (.,h,T) in Lemma 6

ltmll0C , h, t) - OC , h, -)ll11_

S(1+h-l)C 1(h,v)lim11O(.,h,t t -0(.,h,-r)ll i's
t4T

=0

follows from Lemma 1. 0

For each f E L2 (R n), the Fourier transform of f is defined by

p(t) _ 1 itxf (x )e - I t *x d x "

(2nf) 2R

The following notation will be used with the function f only (as it appears

in (12)). For any f e L2(Rn) and N > 0, define fN e L2(Rn) as the

inverse Fourier transform of f{t:jjltjjN} , i.e.

14



fN W 1 n/2(t)eit*xdt and f(t) it), 11tl < N
(2 n)il2 Jt lNN t 11 > N.

Parseval's inequality implies

limllffNlo = limllf- fNiO = 0.
NN40.

Next, for each N > 0, define uh (;N) e H (Rn ) by

uh(x;N) _ I f (t)O(',h,t)eitXdt
(2) 

n / 2 it11N

1 kN(t)(,h,t)eit-xdt

(2w) n/2R
J1 n

in which the integral is to be interpreted as a Bochner integral of H (R')-
-V

valued function (cf. [171). In order to show that the integral has such a

meaning, we need to show that the integrand is strongly measurable and that

tM--jll(t)O(h,t)e itxll _ Is Lebesgue Integrable over {t : tl N.

This integrability condition is satisfies as a result of (ii) of Theorem 8

and because f is an L -function on {t : ltO N}. By strong measurability

of the integrand, we mean there exists a sequence of simple functions

t-)wk(.,t) e H 1 (Rn ) such that

k~
(17) iiml(t)O(i,h,t)e 't'x ~w(xt)I 0.

It is easy to construct such a sequence (and we do so in the proof of Theorem

10 below) using Lemma 9 and the measurability of f. Furthermore, if the

sequence of simple functions satisfies

(18) lim I l(t)(hh't)e itx -wk(x' t)ll1'-, = 0
k-w II t IIN

15



then

ktOSh t)e Itxdt = lim wkC. t)dt in H (IRn),
III t 11:5n hk- ill t II:S _V

in which the integral of a simple function is defined in the standard manner.

Theorem 10. For each N > 0,

O(h)[uh(';N),v = f N(x)v-(-xdx for all v c H1 (Rn).

'Rn

Proof. The essence of this proof is that a sequence of simple functions

satisfying (17) and (18) can be chosen so that each value of each simple func-

tion is of the form co( ,h,r)e i-rx for some T E {t : Iltl s N) and for some

complex number c. With this being the case, Theorem 8 (ii) can be used to

evaluate V(h)[u,v] whenever u is the integral of one of these simple

functions.

To begin, note that H (,n ) c L (,n). Consequently, v is continuous
V) 1

(cf. [151) when v e H (R n), and it follows from Theorem 8 thatV

T(h)[O(xh, T)e i'X,v] = (2n) n/2(r)

is well defined for each T E R

Set f : 1tIh : NJ. Now select a sequence of simple functions

sk : 1---C and a sequence of collections fkj : j = 0,.... Mk} of measur-

able subsets of n for k = 1,2.... and for which the following is true.

For each k:

a) 0 = "kc, j , kj "k, tl m 0 for J 0 t;
J=O

b) for J = 1,... Mk, if t and T are in "kif then

U1(Xht)e it'x -0(,h,t)e It'x 1  < 2-k, and I'(t)-Q(r)I <

2k ;and

16



c) sk is constant on "kj for j = 0,.... Mk, with skt) = 0 for

t E k,0 Sk--fN pointwise a.e. on n, and Isk(t)I S IkN t)I

a.e. on 0.

Next, for each k, pick a Tk' j E ik,j for each j = ... Mk  and define

S i' t e "k'o ,
wk(x't)= k kj.x

k{,h,T )ei t.x"'j

and

rk(t) = {,i t e k,

t E "k,j"

A consequence of the preceding construction and of Theorem 8 (iii) is

}N~t@ h, te -sk(t)wk(x, t) {Il,_u

N k 71)

-< 1-- + 2-k) ,'N MI.

It follows from the first inequality that

liml~fN(t)o(!Sh~t)e it'x - s(t)Wk(.,t)Ill._-u 0 0~
5k k~~'1 ~ = oa.e.k-l-o N

Furthermore, the Lebesgue dominated convergence theorem and the second

inequality imply

lim IlfN(t)O(h,h,t)e itX-s (t)wk(.,t)lll _dt = 0.
kwJO N h' k k 1-i

Consequently, uh(",N) = -lim(2i)-n/2f s (t)wk( ',t)dt in HIV (Rn)

I-w 1t IISNs-
Finally, the continuity of u,-4*(h)[u,v] (Lemma 3); the definitions of

17



S k'wk. and r k; and Parseval's equality implies

*I(h)[u h (;N),v] lim(2c) n/2[f tINsk (t)wk(. ,t)dt~v]

=lim s s( rk d

k+ III t 11:5

~ffNx)v~xrdx

for ll e 1 R ), because N(t) = 0 for jjtjj > N.

It is now a simple matter to prove the main result of this paper.

Theoreml11. Suppose h>O0 and f eL (n). Let u he H 1CR)n be the2 -

solution of (12). Then

(19) u hx) = lim(2r)_2 f(t)O(-S,h,t)e t-dt In Hl (R n,
J~o1 15 h -Li

where, for each N, the Integral is defined as a Bochner integral of

H CR ,) -valued functions.

Proof. A consequence of Theorem 10 Is that

(20) T~Ih)[uh -u h (;N),v] = .f(f(x)-f N(x))v(xdx

JRn

for all v e H C R), from which the inequality

(21) fu hu h(-;N)II 51lf-f10

Is easily derived (cv. Theorem 2 and Lemma 3). Then (19) follows. 0
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Actually, (19) converges in H ( n ) even though each integral is defined

only as a function in H1 (Rn). The reasoning that allows us to identify the

unique solutions of (6) and (12) also yields u h(-;N) E H (R n ) and the fact

that (20) is valid for all v E H 1(n). Now, the Lax-Milgram theorem and (5)

imply

Iu h -u h ( ;N)1 I  1 {{f - f 11

5. Homogenization.

In this section we derive first the classical result of homogenization

h
which states that u converges as h tends to 0, to a function that is

the solution of a constant-coefficient partial differential equation. This is
h

an example of analyzing u through (19) and an analysis of 0(*,h,t).

According to Lemma 1, it is possible to expand 0(-,h,t) in powers of

h, for each t n . Consequently, we can write

(22) 0(.,h,t) = 0O(-It) +01(-,t)h+

The functions {@(-,t) : j = 0,1.... } can be determined by expanding (3) in

powers of h and substituting (22). Here, we are interested in only the

constant term, and solving for It yields

00( ' t ) = g0(t) = n 1

E A t t +A0
p,q=t p q p

where A0  and (Apq : p,q = 1,... ,n} are derived from the periodic coeffi-
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cients a0  and {apq : p,q = 1,... ,n} and certain auxiliary functions.

Complete details are given in [131, where proofs of the properties of

0(.,h,t) that are sted in the following lemma can also be found.

Lemma 12. There exist positive constants 0 and Go. and continuous func-

tions go : n--_(0,w) and G1 : {(h,t) . Rn  : 0 <_ Oh(l+11t11) < 1}--+C0,o)

such that

I) go(t) - 0 and
1+11t1 2'

ii) A0(.,h,t)-go(t)i1,S : Gl(h,t)h for each h Z 0 and t e Rn  that

satisfy eh(1+ltjI) < 1.

A consequence of (i) is that we can define functions u0  and uo(.;N),

for N > O, in H2(R n ) by

Ux) = (2x)-n/2J ?n(t)go(t)elt'xdt
IRn

(23) uo(x;N) = (2,)-n/21 f(t)g (t)e itxdt

"lit II <N

whenever f e L2 (R 
n ) (cf. [111). Note that uo(.;N) = u0  with f = fN" We

have uO = fgo and (uo(-;N)) = k N go, and then Parseval's equality Implies

(24) Uuo - u0 (x;N)II0 < Gollf - fNO.

The integrals that define u0 and u0 (.;N) are to be interpreted as Lebesgue

integrals of numerical-valued functions. However, we want to interpret

Uo(.;N) as an Integral of H (Rn )-valued functions. In the appendix, we

show that the integral in (23) can be interpreted in both ways, in an

unambiguous and consistent manner. Furthermore, note that u0  is the

solution of the constant coefficient differential equation

20



n a2U

(25) A 0(x) +Aouo(x) = f(x).

p,q=1 P q

We can now prove the classical result in homogenization.

Theorem 13. Let f e L (Rn). Let uh e H 1 (Rn be the solution of (12) for
2 -iV

h > 0, and let u0 e H 1(R) c H I(R n ) be the solution of (25). The

limllu h u = 0.
h-O 0 u O 'I

Proof. For each N > 0, we have

(26) flu -u o0 10, V S lu -uh  (;N)If0 , - V +Hu h ( ' ;N)-u O (;N) {{O , - V

+ NUO(•; N) - u0110,_.

Let c > 0 be given. It follows from (21) and (24) that we can choose an

N > 0 that makes each of the first and third terms on the right-hand side of

(26) smaller than c, uniformly In h. Next, a consequence of Lemmas 6 and

12 Is that there exists h0 e (0, ) such that for all h e (0,h
0 9(21+N)0

u h(.; N) -uo(.;N)11,U < (2.) n/2f lf(t)lI(O(h,ht)-go(t))eit'Xodt

i t 11:5N

5 (2R)-n/2C1 ( rh,v)h[  lf(t) 1(h,t)dt

"it II <

<C. 0

Above we have used expansion (22) of the function *(-,h,t). Function

*(*,h,t) is the solution of the elliptic problem (3) with h and t being

parameters. We can find 0(o,h,t) numerically e.g. by the finite element

method for various h and t and then make various expansions or approxima-

tions by numerical approaches. The a posteriori error analysis will lead also
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to an assessment of the accuracy of the used homogenization.

We can use various approximations of *C.,ht) to derive the homogeniza-

tion approach. Let us mention a few. For more, see (5].

a) For given a we can approximate (.,h,t) so that

0(.,h,t) a Zpk-)ok(t),

where f k(t) are rational functions in t. Every 0k(t) then is the symbol

of the homogenized equation

L (.)u = L2 (.)u.

b) We can also use the above approximation of 0(*,h,t) as an "ansatz"

for the solution and derive equations for @k(t) via finite element method

and energy minimization principle. This approach is essentially equivalent to

the derivation of special elements for "rough" problems.

c) Using other approximations we can obtain pseudodifferential

equations.

d) Any homogenization approach can and has to be understood as an

approximation of 0(.,h,t). Hence it is possible to assess the accuracy of a

homogenization approach by comparing it with 0(*,h,t).

By the above mentioned approach a system of second or higher order ellip-

tic equations can be derived. This system will usually be of singularly per-

turbed type and the solution will show boundary larger when n is bounded.

We can use various "ansatzes" of various types in different areas of the

domain, especially in the boundary region By this way we can also obtain

reliable solutions in the neighborhood or the boundary.
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6. Appendix.

Define w(x,t) = (w) n/2f(t)g0 (t)eit'x where f e L2 (Rn ) and go is

defined in Lemma 13. According to (22), u o(;N) e H2 (Rn) is defined by

uo(x;N) = I w(x,t)dt
li t IIN

as an integral of numerical-valued functions. Since

ti-- w(.,t) is strongly measurable in H (n), and

. I~II5NI~(-t)~l-Vdt :5 (2n) n/ ~/f IftI5 t)Idt < -

it follows that

W = J w(.,t)dt

JIt II-N

can be defined as an integral of H1 (R n)-valued functions. We want to prove

Lemma 14. u (.;N) = W as a function in H (Rn).
0 L

Proof. It suffices to show that x-)u o(x;N)e-uIx l and xa--)W(x)e -LI x l

generate the same generalized function. It follows from (27) that a sequence

t-k W(,t) E H (R n ) of simple functions can be chosen so that

"mWk(_t -w ')I-, = 0 a.e.

k-o

and

llWk(',t)Il ,_ :5 -l ( ,t lt _ a.e.

Then by definition, W = lim f Wk(-,t)dt in HI (n).
k-ow I t 11: -N
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Let 0 e CO n~I Then Fubini's theorem, the Lebesgue dominated conver-

gence theorem, and the definitions of w k and W imply

R n jtjN R(x;N)e-vlxi(xdx w= 'Ie-vtII-TN fd
11MnF wk~x' t) e-1 ~'(x~dx

R JnW(x) eUI 1x 1 Tdx.
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